Relation Network for Multilabel Aerial Image Classification
نویسندگان
چکیده
منابع مشابه
Combining Classifiers for Improved Multilabel Image Classification
We propose a stacking-like method for multilabel image classification. Our approach combines the output of binary base learners, which use different features for image description, in a simple and straightforward way: The confidence values of the base learners are fed into a support vector machine (SVM) in order to improve prediction accuracy. Experiments on the datasets of the Pascal Visual Ob...
متن کاملAdapting non-hierarchical multilabel classification methods for hierarchical multilabel classification
In most classification problems, a classifier assigns a single class to each instance and the classes form a flat (non-hierarchical) structure, without superclasses or subclasses. In hierarchical multilabel classification problems, the classes are hierarchically structured, with superclasses and subclasses, and instances can be simultaneously assigned to two or more classes at the same hierarch...
متن کاملLearning Image Conditioned Label Space for Multilabel Classification
This work addresses the task of multilabel image classification. Inspired by the great success from deep convolutional neural networks (CNNs) for single-label visualsemantic embedding, we exploit extending these models for multilabel images. Specifically, we propose an imagedependent ranking model, which returns a ranked list of labels according to its relevance to the input image. In contrast ...
متن کاملConsistent Multilabel Classification
Multilabel classification is rapidly developing as an important aspect of modern predictive modeling, motivating study of its theoretical aspects. To this end, we propose a framework for constructing and analyzing multilabel classification metrics which reveals novel results on a parametric form for population optimal classifiers, and additional insight into the role of label correlations. In p...
متن کاملEfficient pairwise multilabel classification
Multilabel classification learning is the task of learning a mapping between objects and sets of possibly overlapping classes and has gained increasing attention in recent times. A prototypical application scenario for multilabel classification is the assignment of a set of keywords to a document, a frequently encountered problem in the text classification domain. With upcoming Web 2.0 technolo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Transactions on Geoscience and Remote Sensing
سال: 2020
ISSN: 0196-2892,1558-0644
DOI: 10.1109/tgrs.2019.2963364